Effects of Active Cooling Techniques to Improve The Overall Efficiency Of Photovoltaic Module- An Updated Review

Author:

Tiwari Mayank Kumar,Mishra Venktesh,Dev Rahul,Singh Nitin

Abstract

Our scientists have struggled for the last few decades to save the nation from the harmful emission caused by burning fossil fuel and restore enormous solar radiation energy. Despite their hard labor in this field, only 12-16% of solar radiation is converted into electrical energy. The major part of it is wastage as heat that causes to rise of panel temperature and lowers its efficiency. The aim of the review is to find out the cost-effective and efficient active cooling methods of solar photovoltaic (SPV) cell to improve their overall performance. Therefore, thirty-two active cooling techniques are thoroughly studied, compared their results from more than a hundred papers. Cooling of the SPV panel is a function of optimum spraying timing, coolant flow rate, wind condition, the distance between flow points (nozzle) to the panel, and solar radiation. The major facts revealed that the efficiency of the PV panel is optimum within 25-300C, and the panel's performance decreases by 0.5% for each 10C rise of panel temperature from standard temperature. The best active cooling method revealed that the electrical efficiency of the PV module could be increased by 57% with a lowering of module temperature by 32% in hot summer.

Publisher

EDP Sciences

Subject

General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3