Proposed stress block for no coarse-aggregate concrete

Author:

Christianto Daniel,Tavio ,Yoana Metta,Utami Tiara Amira,Patrick ,Lenita Helga

Abstract

Concrete is one of the materials in construction that continues to develop in strength and efficiency. Since most areas in Indonesia are vulnerable to earthquakes, the building structures must be more resistant to seismic forces. Increasing the concrete's strength might reduce the building structure's dimensions and weight, which will also reduced the earthquake force. One example of high-strength concrete is reactive powder concrete (RPC), an innovative concrete with small particle materials to fill in the space within the concrete so it can strengthen the concrete. Despite the advantage, there is still a lack of design provisions for this type of concrete. This research was conducted to analyze the stress-strain diagram curve and the compressive stress block for no-coarse aggregtae concrete. In this research, compression tests have been carried out on 100 mm × 200 mm cylinder samples with concrete compressive strength ranges from 28 to 76 N/mm2. Test results indicate that the actual curve of the stress-strain relationship for concrete without coarse aggregate is almost linear and shaped like a triangle with the maximum strain ranges from 0.006 to 0.008. The energy per unit volume ranges from 0.1175 to 0.3658 N/mm2 and the average force capture point is 0.62626 units. Based on the test results, compression stress block for no-coarse aggregtae concrete are proposed.

Publisher

EDP Sciences

Subject

General Medicine

Reference11 articles.

1. Modified EC2's Shear Strength Equation for No Coarse Aggregate RC Beams

2. Plastic Theory of Reinforced Concrete Design

3. Wight J.K., MacGregor J.G., Reinforced concrete: mechanics and design 6th Ed. (United States: Pearson Education Limited, 2012)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3