Author:
Dong Ping,Cheng Dong,Jing Huixiang,Li Guanghua,Lu Bingju,Wang Ximeng
Abstract
The flow structure of the submerged gas jet in liquid currents is important to engineering applications. In the present study, the development of a submerged gas jet subjected to liquid current is experimentally investigated to evaluate the effects of the current on the underwater gas jet evolution. A full-scale experimental setup is designed for submerged gas jet release and dispersion in the liquid currents with different velocities. The flow structures of the gas jet are captured by shadow photography combined with a high speed video camera. The experimental images are processed to extract the parameters and perform Proper Orthogonal Decomposition (POD) analysis to reveal the characteristics of different modes standing for different flow structures. It turns out that the flow structures of the gas jets submerged in liquid currents with different velocities are affected by the liquid currents and gas jet pulsation, and the analysis will provide credible assessment and opportunity to take prompt response to control potential accidents caused by the submerged gas jet release in liquid current.