Optimal Selection of Gear Ratio for Hybrid Electric Vehicles Using Modern Meta-Heuristics Search Algorithm

Author:

Kamboj Vikram Kumar,Saxena Sobhit,Sandhu Kamalpreet

Abstract

Gear Train Design problem is most important design problem for machine tools manufacturers. Recent work on gear train improvement has been bound towards multi-shaft gear trains of the speed-change kind, where major focus is to maximize the range of operating speeds and to minimize the number of gears and spindles. In the proposed research, a hybrid meta-heuristic search algorithm is presented to design and optimize multi-spindle gear trains problem. The objective of the research is to optimize gear trains on the basis of minimum overall centre distance, minimum overall size, minimum gear volume, or other desirable criteria, such as maximum contact or overlap ratios. The proposed hybrid meta-heuristic search algorithm is inspired by canis lupus family of grey wolves and exploitation capability of existing grey wolf optimizer is further enhanced by pattern search algorithm, which is a derivative-free, direct search optimization algorithm suitable for non-differential, discontinuous search space and does not require gradient for numerical optimization problem and have good exploitation capability in local search space. The effectiveness of the proposed algorithm has been tested on various mechanical and civil design problem including gear train design problem, which includes four different gear and experimental results are compared with others recently reported heuristics and meta-heuristics search algorithm. It has been found that the proposed algorithm indorses its effectiveness in the field of nature inspired meta heuristics algorithms for engineering design problems for hybrid electric vehicles.

Publisher

EDP Sciences

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3