Effect of Solid Bases Catalyst on Conversion of Acrylonitrile into Acrylic Acid by Hydrothermal Reaction

Author:

Yue Chang,Ye Haixia,Yang Xuejun,Wang Ke,Miao Jia,Liu Shiyang,Shen Zheng,Zhang Yalei

Abstract

This study aims at the shortcomings of the current industrial application of acrylonitrile wastewater treatment, using alkali-catalyzed hydrothermal technology to convert acrylonitrile into acrylic acid for achieving resource utilization. In this study, alkali metal, alkaline earth metal hydroxide and composite solid base were used as catalysts to investigate catalytic effects of these solid based on the hydrothermal reaction. The results show when using the alkali and alkaline-earth metal hydroxides as catalysts, the best effect of treatment was KOH and the highest yield of acrylic acid reached 56.60%. It was also found that, among the three kinds of solid base catalysts (Ca-O-Mg, K-O-Al, K-O-Si) adopted with the same mass and various loading capacity, K-O-Si (15%) was the most effective catalyst for the conversion of acrylonitrile, and the highest yield of acrylic acid reached 57.78%. This process provides an environmentally friendly method toward the synthesis of useful acrylic acid from acrylonitrile within a very short time.

Publisher

EDP Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3