Motion model and key parameters of overburden strata in longwall filling face

Author:

Yin Zengde,Liu Jinxiao,Zhang Feng,Liu Yongle,Li Wenxin

Abstract

When the paste material is filled into the longwall working face of the coal mine, it firstly controls the movement of the overburden strata, thereby limiting the movement of the far field rock layer and reducing the subsidence. With this regard, the paste filling technology of the long-wall mining can address the limitation of “three down, one up” (mining under water body, building and rail, and on karst water body) technology in coal mining, thus improving the extraction rate of coal resource. To control the movement of the overburden strata near the working face, the prerequisite is to clarify the relationship among the parameters, including coal mining thickness, filling body thickness, filling step, filling body strength, etc. On this basis, this paper established an overall mechanical model of the filling body and surrounding rock, and determined the key technical parameters of the overburden movement, i.e., the filling rate, the strength of the filling body, and the filling step. Then, the influence of these parameters on the overburden movement and abutment pressure was analyzed through the numerical simulation method. The results show that at a higher filling rate, the overburden motion can be better controlled; the filling step only had a significant effect on the roof subsidence within the relevant step; as the early strength of the filling body was higher, the overburden subsidence was smaller and the abutment pressure in front of the face was better controlled. The research of overburden motion model and its key parameters have a good guiding significance for paste filling in the longwall face of coal mines.

Publisher

EDP Sciences

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3