Recyclable Polymer Matrix Nanocomposites for Sustainable Packaging Solutions

Author:

Yadav Ruchika,Kumar Singla Atul,Ghalwan Manish,Mahajan Shriya,Sharma Pooja,Sankara Babu B.,Talukdar Soumita

Abstract

This study explores the potential of recyclable polymer matrix nanocomposites for sustainable packaging solutions. Nanocomposites were created by combining different polymer matrices (PET, PLA, HDPE, PP) with various types of nanofillers (Clay, Graphene, Cellulose, Nanoclay), and the nanofiller content varied from 2% to 5%. Graphene-based nanocomposites demonstrated exceptional tensile strength (55 MPa) and Young's modulus (4.0 GPa) in comparison to alternative formulations, as indicated by mechanical properties analysis. Graphene nanocomposites demonstrated the most effective barrier properties, with the lowest oxygen permeability (1.0 cm^3/m^2·day·atm) and water vapor transmission rate (2.3 g/m^2·day). The analysis revealed that cellulose nanocomposites exhibited the highest glass transition temperature (72°C) and melting temperature (185°C) in terms of their thermal properties. The findings highlight the wide range of benefits that recyclable polymer matrix nanocomposites can bring to sustainable packaging applications. These include improved mechanical strength, enhanced barrier performance, and increased thermal stability. This underscores their versatility and potential in this field. Additional research is necessary to enhance synthesis methods, investigate new nanofiller materials, and assess long-term performance in real-world packaging scenarios.

Publisher

EDP Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3