High-quality recycling through self-learning and resilient recycling networks using a combination of agent-based modelling and life cycle assessment

Author:

Brinkmann Tobias,Steinfeldt Michael,Arndt Carmen,Carstens Anna,Spuziak-Salzenberg Detlef

Abstract

Especially in the case of long-lived products, the crucial questions about the proper implementation and assurance of high-quality recycling targets often only arise after decades. Furthermore, information about material composition is often not sufficiently known and communicated to the end user. With the presented extended socio-technical approach of a self-learning and resilient recycling network, which should include manufacturers and operators of wind farms, dismantlers, waste processors and recyclers, as well as authorities and players from research and development, such problems can be adequately addressed. On the one hand, this requires knowledge tools to ensure a high-quality material cycle, such as databases in which installed products and their characteristic values for the masses and materials used are documented. In addition, material flow modeling to track material flows generated for the end-of-life (EoL) of products including life cycle assessments of recycling and disposal routes, as well as forecasting tools for expected waste volumes are needed. On the other hand, a simulation tool such as agent-based modeling (ABM) is also needed to map courses of action and their impacts, taking into account stakeholders’ interests in terms of target formulation of the recycling network. The example of wind turbine rotor blades is used to show how such an approach can be used for a meaningful recycling network, which supports the operator responsibility of wind farms as well as the extended producer responsibility of wind turbines with regard to sustainable recycling of long-lived products. The developed tools and especially their active combination are presented. In addition, the example of rotor blades is used to present the concrete possibilities for resource-saving control of the material flows.

Publisher

EDP Sciences

Subject

General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Incorporating Consumer Behaviour Into the Environmental Appraisal of Eco-Packaging;Advances in Finance, Accounting, and Economics;2024-05-17

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3