Numerical estimation of thermal load in a three blade vertically agitated mixer

Author:

Singh Tomar Anshul,K G Harish,Prakash K Arul

Abstract

The objective of this study is to understand the flow physics and resulting heat transfer behind the mixing of highly viscous solid propellant in a vertical three blade mixer. The mixer comprises a four-winged central agitator rotating in the counter-clockwise direction and two other two-winged agitators rotating in clockwise direction. The temperature rises due to the shearing of the solid propellant. Uncontrolled temperature rise may result in the self-ignition of the propellant and other fire hazards. Thus it becomes important to quantify the heat generated due to viscous dissipation to attain a controlled atmosphere for mixing. A detailed CFD analysis is carried out, and two-dimensional energy equation with viscous dissipation term is solved to quantify the temperature rise due to viscous dissipation. The effect of angular velocity of the agitator and viscosity of the propellant over temperature rise is studied quantitatively using the overset method in OpenFOAM. The maximum velocity of the propellant is observed at the tip of agitators, whereas maximum temperature rise is found around the vicinity of the blade profile. A correlation is proposed to predict the temperature rise with time due to the viscous effect for the given range of angular velocity.

Publisher

EDP Sciences

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3