An Updated Design Procedure for Tesla Turbines

Author:

Renuke Avinash,Traverso Alberto,Kalfas Anestis

Abstract

Tesla turbine rotor, a special case of the flow between two corotating disks, has been studied in the past analytically and the performance is discussed both qualitatively and quantitatively. However, there is no systematic design criteria/process given to design the rotor of a Tesla expander in the peer-reviewed literature. Such design procedure, presented in this article, allows researchers and engineers to design and optimise the rotor for a given fluid and design condition (Power, flow and rotational speed). In this article, we present a 0-D design methodology to calculate rotor design parameters such as disk diameters, the gap between disks, the number of disks and the rotational speed of the expander, and efficiency and power estimation. This design procedure is based on the correlations and optimal ranges present in the literature. The 0-D model discussed in this article is a promising design approach to the preliminary design of the Tesla rotor and then further fine-tuning could be done based on the CFD simulations when coupled with the stator. A case study is presented with a 3-kW air bladeless expander prototype in which the rotor is designed using the 0-D model approach and compared with 2D Computational Fluid Dynamics results.

Publisher

EDP Sciences

Subject

General Medicine

Reference9 articles.

1. Tesla N., Turbine, US Patent 1061206 (1913)

2. Tesla N., Fluid Propulsion, US Patent 1061142 (1913)

3. Experimental and Numerical Investigation of Small-Scale Tesla Turbines

4. An Analytical and Experimental Investigation of Multiple-Disk Turbines

5. Schlichting H., Boundary Layer Theory, McGraw-Hill Book Co., Inc., New York, NY, fourth Ed., p547 (1962)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3