Low-cement content gravity dam as an alternative for Pskem HPP

Author:

Aniskin Nikolai,Shaytanov Alexey,Shaytanov Mikhail,Khokhotva Sergei

Abstract

In this paper, we consider the numerical justification of the possibility to construct a low-cement content concrete gravity dam as an alternative to the traditional solution with a rockfill dam in a Pskem HPP canyon on the river Pskem in Uzbekistan Republic. The calculation studies were performed using the finite element method (FEM), considering the non-linear (elastoplastic) behavior of concrete and foundation rock in the ANSYS software package. Seismic stability of structure was ascertained by means of time-dependent transient dynamic analysis in accordance with the implicit temporal scheme, since such approach allows to trace the development of plastic deformations in the structure and foundation during dynamic loading as well as to evaluate the possible adverse effects. Maximum design earthquake bicomponent accelerogram was involved as an input data for seismic stability analysis. According to the results of the study the conclusions were made about the possibility of construction of a high low-cement content concrete dam in geotechnical, hydrological and climatic conditions of the Pskem HPP site on the Pskem River as well as on the other HPPs of the Chirchik-Bozsu cascade in Uzbekistan Republic, which are now under design. The reported study was funded by RFBR, project number 20-38-90160.

Publisher

EDP Sciences

Reference20 articles.

1. ICOLD Bulletin 075. Roller compacted concrete for gravity dams – State of the art (1989).

2. ICOLD Bulletin 117. The gravity dam, a dam for the future (2000).

3. SHNK 2.06.11-04. Construction in seismic regions. Hydraulic engineering structures (2006)

4. SP 358.1325800.2017. Hydraulic structures. Rules of design and construction in seismic-prone regions (2018)

5. SP 20.13330.2016. Loads and actions (2017)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3