Sol-gel synthesis of zirconia-based nanoparticles from the side product of tin mining

Author:

Kristiani Anis,Wiyono ,Prasetiyo Arif,Petrus Himawan Tri Bayu Murti,Jenie Siti Nurul Aisyiyah,Dwiatmoko Adid Adep,Hidayati Luthfiana Nurul,Aulia Fauzan,Sudiyarmanto ,Dahnum Deliana

Abstract

Indonesia has been one of the world’s primary source of tin since the early of 19th century. Bangka island has the largest tin abundant with a side product is zircon sand (ZrSiO4). The existence of zircon (ZrSiO4) is mostly associated with some of the valuable oxide compounds (VOC) and rare earth oxides (REO). The zirconia powders were synthesized from the zircon sand of PT. Timah Tbk by caustic fusion method followed by sol-gel method. The raw material zircon sand and as-synthesized zirconia were characterized through x-ray fluorescence (XRF), x-ray diffraction (XRD), surface area analysis and porositymeter, thermogravimetric and differential scanning calorimetry analysis (TG-DSC), fourier transform infra-red (FTIR) and scanning electron microscopy (SEM) techniques. The results show that zircon sand from PT Timah Tbk contains some of VOCs, such as ZrSiO4, ZrO2, HfO2, SiO2, Al2O3, TiO2, Fe2O3 and some REOs, such as La2O3, Y2O3, Nb2O5. The fusion temperatures varied from 600 to 800 °C which resulted in an increase of the purity of ZrO2 to 76% based on the XRF analysis. The surface area analysis and porositymeter results showed the significant change in specific surface area, pore size and pore volume of as-synthesized zirconia. The specific surface area increased dramatically from 0.28 m2/g to 173.97, 125.18, and 102.14 m2/g, at fusion temperatures of 600, 700, and 800 °C, respectively. The average particle size of as-synthesized zirconia showed the significant change from 21.31μm to 34.48 nm. The results of this work open new opportunities for the development of zirconia-based nanoparticles from the side product of tin mining.

Publisher

EDP Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3