Carbonated Smart Water Injection for Optimized Oil Recovery in Chalk at High Temperature

Author:

Islam Khan Md Ashraful,Kleiberg Sander Haaland,Pinerez Torrijos Ivan Dario,Puntervold Tina,Strand Skule

Abstract

Finding cost-efficient ways of increasing oil production with a low carbon footprint is the new challenge for the petroleum industry that wants to meet the net-zero emission goals by 2050. Smart water injection is an EOR process that increases oil production and delays water breakthrough by wettability alteration. Seawater is a smart water in chalk reservoirs, being especially effective at high temperatures. Different studies have shown that the effectiveness of seawater can be further improved by modifying the ion composition before injection. Carbonated water (CW) has been proposed as a potential EOR fluid. In addition to producing extra oil, the reduction of greenhouse gas (CO2) in the atmosphere can be achieved by using carbonated smart water as an injection fluid. The main mechanism behind increased oil recovery by injecting carbonated water is believed to be oil viscosity reduction and swelling, as the CO2 is transferred from the aqueous phase to the oil phase. Wettability alteration has also been proposed as a possible mechanism, and this hypothesis is further investigated in this study along with other proposed mechanisms. Stevns Klint outcrop chalk was used in this study, this material is recognized as an excellent analogue for North Sea chalk reservoirs. Optimized oil recovery by carbonated water in chalk was investigated at a high temperature (130°C) by flooding carbonated formation water (CFW) and carbonated seawater (CSW), to be compared with high saline formation water (FW) and seawater (SW) flooding. The oil/brine/rock/CO2 interactions were tracked by measuring the pH of the produced water (PW) and by identifying any mineralogical changes by SEM (Scanning Electron Microscope) and EDX (Energy Dispersive X-Ray) analyses. The solubility of CO2 in different brines was measured and compared with simulation data performed by PHREEQC. The diffusion of CO2 from the aqueous phase to the oil phase was analysed to check if enough CO2 can be diffused from the carbonated water into the oil phase. By flooding CSW in both secondary and tertiary modes, a slight increase in the oil recovery was observed and was found to be the best performing brine. The oil recovery was also slightly increased using CFW in tertiary mode after FW which does not behave like smart water for carbonates. The solubility of CO2 was low and increased by increasing pressure and decreasing brine salinity. The acidity of CW did not increase by increasing pressure. No changes in pore surface minerals were observed after CW flooding, confirming limited mineral dissolution. A mass transfer of CO2 from the brine phase to the oil phase was confirmed in the experimental work, but a significant amount of CO2 remained in the brine phase. The main mechanism behind this extra oil observed using CW is most likely not linked to oil swelling and viscosity reduction or mineral dissolution which could affect the porosity and the permeability of the rock system. Wettability alteration is a more likely explanation but needs to be looked further into for confirmation.

Publisher

EDP Sciences

Subject

General Medicine

Reference36 articles.

1. BP. Statistical Review of World Energy. 2020 [cited 2022 20 May]; Available from: https://www.bp.com/en/global/corporate/energy-economics/statistical-review-of-world-energy/oil.html.

2. Comprehensive review of carbonated water injection for enhanced oil recovery

3. Riazi M., et al. Oil Recovery Improvement Using CO2-Enriched Water Injection. in EUROPEC/EAGE Conference and Exhibition. 2009.

4. Carbonated water injection: an efficient EOR approach. A review of fundamentals and prospects

5. Green D. W., a.G.P.W., Enhanced oil recovery. SPE Textbook Series, . 1998: Society of Petroleum Engineers, Richardson, Texas.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3