Pore-scale Analysis of CO2-brine Displacement in Berea Sandstone and Its Implications to CO2 Injectivity

Author:

Sun Guangyuan,Sun Zhuang,Fager Andrew,Crouse Bernd

Abstract

For storage in deep saline formations, where CO2 is injected into the pore spaces of rocks previously occupied by saline groundwater (brine), relative permeability is a key input parameter for predictive models. CO2 injectivity is considered to reach the maximum value at the CO2 endpoint relative permeability when brine saturation becomes irreducible. The objective of this study is to investigate the effect of viscosity ratio, interfacial tension and wettability on relative permeability during CO2-brine drainage. A multiphase lattice Boltzmann model (LBM) is employed to numerically measure pore-scale dynamics in CO2-brine flow in the sample of Berea sandstone. CO2/brine with interfacial tension from 30 to 45 mN/m and viscosity ratio from 0.05 to 0.17 (the range of values expected for typical storage reservoirs conditions) are carried out to systematically assess the influence on the relative permeability curves. Although CO2 storage in sandstone saline aquifers is predominantly water wet, there are contradictory results as to the magnitude of the contact angle and its variation with fluid conditions. Therefore, the range of wetting conditions is studied to gain a better insight into the effect of wettability on supercritical CO2 displacement. In this study, it is observed that interfacial tension variations play a trivial impact while both of viscosity ratio and wettability are likely to have a significant effect on relative permeability curves under representative condition of storage reservoirs. We also perform a near-wellbore scale geomechanics analysis to investigate the impact of relative permeability on CO2 injectivity. The result shows that water-wet condition facilitates the CO2 injection when there is no fracture induced.

Publisher

EDP Sciences

Subject

General Medicine

Reference37 articles.

1. IEA (International Energy Agency) Prospects for CO2 Capture and Storage. IEA/OECD, Paris, 249 (2004)

2. IPCC (Intergovernmental Panel on Climate Change) IPCC special report on carbon dioxide capture and storage. In: Metz B, Davidson O, de Coninck HC, Loos M, Mayer LA, Cambridge University Press, Cambridge, 442 (2005)

3. Sequestration of CO2 in geological media in response to climate change: capacity of deep saline aquifers to sequester CO2 in solution

4. STORAGE OF FOSSIL FUEL-DERIVED CARBON DIOXIDE BENEATH THE SURFACE OF THE EARTH

5. Integrated collaborative technology development program for CO2 sequestration in geologic formations––United States Department of Energy R&D

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3