Towards Multiscale Digital Rocks: Application of a Sub-Resolution Production Model to a multiscale Sandstone

Author:

Salazar-Tio Rafael,Fager Andrew,Sun Guangyuan,Crouse Bernd,Xu Rui,Wendt Brett,Lewis Adam

Abstract

Many digital rock methodologies use a direct simulation approach, where only resolved pores are accounted for. This approach limits the types of rocks that can be analyzed, excluding some types of carbonates, unconventionals, and complex sandstones from the digital rock analysis. This is due to the challenge for single scale imaging to capture the full range of relevant pore sizes present in multiscale rocks. In this paper, a physical model is presented, within the context of an established direct simulation approach, to predict the production of hydrocarbons including the contribution of sub-resolution pores. The direct simulation component of the model employs a multiphase lattice Boltzmann method to simulate multiphase fluid flow displacement in resolved pores. In the production model, the amount of hydrocarbons present in the sub-resolution pores is identified and a physical description of the production behavior is provided. This allows a relative permeability curve to be predicted for rocks where mobile hydrocarbons are present in pores smaller than the image resolution. This simplified model for the oil movement in the unresolved pore space is based on a physical interpretation of different regions marked by simulation resolution limits in a USBM wettability test curve. The proposed methodology is applied to high-resolution microCT images of a sandstone that contains pores at multiple scales, some resolved and some not resolved. To allow for benchmarking, experimental routine and special core analysis data was also obtained. Good agreement to experimental results is observed, specifically in absolute and relative permeability. The presented multiscale model has the potential to extend the classes of reservoir rocks eligible for digital rock analysis and paves the way for further advancements in the modelling of multiscale rocks, particularly unconventionals and carbonates.

Publisher

EDP Sciences

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3