Author:
Felício Filipe,Silverio Vania,Duarte Sofia,Galvão Ana,Monteiro Gabriel,Cardoso Susana,Cardoso Rafaela
Abstract
Soil improvement using ureolytic bacteria or other biological agents is a promising technique currently under investigation. It is based on the precipitation of calcium carbonate (biocement) due to the enzymatic hydrolysis of urea. The biocement produced clogs the soil pores, consequently bonding the soil grains and increasing overall strength and stiffness while reducing permeability. This study focused mainly on pore clogging effects. The effect of the enzyme and feeding solution concentrations was studied in small test tubes to find the maximum amount of precipitate found when changing the concentrations of both. Based on it, selected concentrations of enzyme and feeding solution were tested in a microfluidic device conceived to mimic a two-dimensional uniform porous size medium. Qualitatively, the amount of precipitate was proportional to that of the concentrations used. The location of the precipitate was clearly related with the direction of fluid flow during inoculation. These preliminary results highlight the fact that the use of alternative testing devices such as the one developed is a potential tool for the study of clogging phenomena occurring during this treatment.
Reference9 articles.
1. Applications of microorganisms to geotechnical engineering for bioclogging and biocementation of soil in situ
2. Biological Considerations in Geotechnical Engineering
3. Whiffin V. S. Microbial CaCO3 Precipitation for the Production of Biocement. Phd Thesis, Murdoch University, Perth, Australia (2004)
4. Gomez M. G., Martinez B. C., DeJong J. T., Hunt C. E., deVlaming L. A., Major D. W., and Dworatzek S. M. Proceedings of the Institution of Civil Engineers-Ground Improvement, 168(3), 206-216 (2015)
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献