Research of photovoltaic properties of cogeneration cylindrical photovoltaic module for hybrid solar panels

Author:

Halko Serhii,Dyadenchuk Alena,Halko Kateryna

Abstract

Solar energy is the most efficient and cleanest source of energy, as well as a cheap and eternal source of renewable energy. Improving the energy efficiency of solar panels will optimize their energy characteristics and operating modes, taking into account the load and solar radiation energy. The work is aimed at studying photosensitive structures based on porous Si and ZnO that are promising for solar energy. To increase the efficiency of solar panels, hybrid panels based on cogeneration photovoltaic modules of cylindrical shape cooled by liquid have been developed. This will open up the possibility of creating hybrid solar photovoltaic panels for simultaneous the generation of electricity and heat. A scheme for a hybrid solar panel device using a cooled cogeneration cylindrical photomodule based on ZnO/porous-Si/Si heterostructures is proposed. Using the PC1D program, the light characteristics of the manufactured structure (no-load voltage VOC, short-circuit current ISC, fill factor FF, and efficiency η) were calculated and the volt-ampere characteristics were plotted. The influence of porous-Si and ZnO layer thickness, texture, and doping level of the ZnO layer, as well as the effect of temperature on the performance of a ZnO/porous-Si/Si heterojunction solar cell was investigated in order to obtain a device with good conversion efficiency. It has been established that the energy conversion efficiency of a cogeneration cylindrical photomodule based on ZnO/porous-Si/Si heterostructures can reach 23.9 %.

Publisher

EDP Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3