Charge transfer processes in granulated Mg3Sb2 particles

Author:

Fazliddin Omonboev Lutfiddin o’gli,Mamadalimov Tishabayevich Abdugafur,Olimov Omanovich Lutfiddin

Abstract

In the article, temperature dependence of specific resistance (ρ), concentration of charge carriers (n) and mobility (<) was studied experimentally at T=300-700 K to study charge transfer processes in granulated Mg3Sb2 particles. The research results were explained on the basis of the charge transfer mechanism in Mg3Sb2 particles. In particular, at the initial stage of temperature increase, Т≤375 К, localized traps with energy level Ein appear in the interparticle boundary areas of the heated part of the sample. When charge carriers are trapped in them, ρ increases sharply, and n decreases. In the later stages of temperature increase, the thermal phenomenon increases along the length of the sample. In this process, localized traps with energy level Ein appear successively in the interparticle boundary regions located along the length of the sample. In relation to the charges held in them, the concentration of the generated charge carriers n increases in accordance with the increase in temperature, in this case ρ changes steadily. The increase of the potential barrier height in the interparticle boundary regions from φ ~ 0.411 eV to 0.91 eV confirms the above considerations. In addition, under the influence of temperature, the particle size and impurity ionization in the interparticle boundary areas or thermal fluctuations of the crystal lattice decrease the free movement path of the carriers. This leads to a decrease in µ at T=300-700 K.

Publisher

EDP Sciences

Subject

General Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3