Improving Diabetic Diagnosis and Prevention with Machine Learning on Retinal Imaging

Author:

Min Yushan

Abstract

If the retinal images show evidences of abnormalities such as change in volume, diameter, and unusual spots in the retina, then there is a positive correlation to the diabetic progress. Mathematical and statistical theories behind the machine learning algorithms are powerful enough to detect signs of diabetes through retinal images. Several machine learning algorithms: Logistic Regression, Support Vector Machine, Random Forest, and Neural Networks were applied to predict whether images contain signs of diabetic retinopathy or not. After building the models, the computed results of these algorithms were compared by confusion matrixes, receiver operating characteristic curves, and Precision-Recall curves. The performance of the Support Vector Machine algorithm was the best since it had the highest true-positive rate, area under the curve for ROC curve, and area under the curve for Precision-Recall curve. This conclusion shows that the most complex algorithms doesn’t always give the best performance, the final accuracy also depends on the dataset. For this dataset of retinal imaging, the Support Vector Machine algorithm achieved the best results. Detecting signs of diabetic retinopathy is helpful for detecting for diabetes since more than 60% of patients with diabetes have signs of diabetic retinopathy. Machine learning algorithms can speed up the process and improve the accuracy of diagnosis. When the method is reliable enough, it can be utilized in diabetes diagnosis directly in clinics. Current methods require going on diets and taking blood samples, which could be very time consuming and inconvenient. Using machine learning algorithms is fast and noninvasive compared to the existing methods. The purpose of this research was to build an optimized model by machine learning algorithms that can improve the diagnosis accuracy and classification of patients at high risk of diabetes using retinal imaging.

Publisher

EDP Sciences

Reference6 articles.

1. Belvoir Media Group. (2011, June). Identify diabetes early to prevent complications. Healthy Years, 8(6). Gale Virtual Reference Library. https://link.gale.com/apps/doc/A258358658/GPS7u=delray3411&sid=GPS&xid=aed8c300

2. World Health Organization. (2013). First A1c test labelled for diagnosing diabetes. WHO Drug Information, 27(2). Gale Virtual Reference Library. https://link.gale.com/apps/doc/A342769554/GPS7u=delray3411&sid=GPS&xid=27025b35.

3. How Do We Diagnose Diabetes and Measure Blood Glucose Control?

4. Belvoir Media Group. (2019). Protect Your Sight if You Have Diabetes: As many as 45 percent of Americans with diabetes have a condition called diabetic retinopathy, but many are not aware of it. Focus on Healthy Aging, 22(11).

5. Mark Allen Group. (2004). Optometric imaging systems Part 3: Retinal imaging systems. Optician.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Prediction of Diabetes and Symptoms of Covid-19 Using Machine Learning Classifiers;2022 International Conference on Applied Artificial Intelligence and Computing (ICAAIC);2022-05-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3