Excitation Contraction Coupling in Hypertrophy and Failing Heart Cells

Author:

Zhou Yiqiu

Abstract

The contraction of the heart is dependent on a process named the excitation-contraction coupling (E-C coupling). In hypertrophy and failing heart models, the expression, phosphorylation and function of key calcium handling proteins involved in E-C coupling are altered. It’s important to figure out the relationship changes between calcium channel activity and calcium release from sarcoplasmic reticulum (SR). This review will therefore focus on novel components of E-C coupling dysfunction in hypertrophy and failing heart, such as L-type Ca2+ channel (LCC), ryanodine receptor type-2 channel (RyR2) and SR Ca ATPase (SERCA), and how these molecular modifications altered excitation-contraction coupling. A lot of literature was well read and sorted. Recent findings in E-C coupling during hypertrophy and heart failure were focused on. Most importantly, the electrophysiological and signal pathway data was carefully analyzed. This review summarizes key principles and highlights novel aspects of E-C coupling changes during hypertrophy and heart failure models. Although LCC activity changed little, the loss of notch in action potential, reduced Ca2+ transient amplitude and desynchronized Ca2+ sparks resulted in a decreased contraction strength in hypertrophy and heart failure models. What’s more, L-type Ca2+ current becomes ineffective in triggering RyR2 Ca2+ release from SR and the SR uptake is reduced in some models. It has great meanings in understanding the E-C coupling changes during different heart diseases. Theses novel changes suggest potential therapeutic approaches for certain types of hypertrophy and heart failure.

Publisher

EDP Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3