Non-invasive detection of silicosis based on array sensing and pattern recognition

Author:

Xuan Wufan,Han Zhen,Zheng Lina

Abstract

Silicosis is a fibrotic lung disease caused by inhalation of silica dusts, early and accurate diagnosis of which remains a challenge. We aimed to assess the performance of a nanofiber sensor array and pattern recognition to promptly and noninvasively detect silicosis. A total of 210 silicosis cases and 430 non-silicosis controls were enrolled in a cross-sectional study. Exhaled breath was analysed by a portable analytical system incorporating an array of 16x organic nanofiber sensors. Models were established by Deep Neural Network and eXtreme Gradient Boosting. Linear Discriminant Analysis was used for dimensionality reduction and visualized data analysis. Receiver Operating Characteristic Curve, accuracy, sensitivity and specificity were used to evaluate models. Results: 99.3% AUC, 96.0% accuracy, 94.1% sensitivity, and 96.3% specificity were achieved in test set. Silicosis cases present different breath patterns from healthy controls, classification results using which were highly consistent with the experts’ diagnosis. Breath analysis performed with the sensor array and pattern recognition is expected to provide a quick, stable recognition for silicosis. In this paper, different forms of features, different algorithms and data sets over long time periods were used, which provides a reference for silicosis expiratory diagnosis scheme.

Publisher

EDP Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3