A data-driven model for the analysis of energy consumption in buildings

Author:

Borgato Nicola,Prataviera Enrico,Bordignon Sara,Garay-Martinez Roberto,Zarrella Angelo

Abstract

Data-driven models are gaining traction in Building Energy Simulation, driven by the increasing role of smart metering and control in buildings. This paper aims to enhance the knowledge in this sector by introducing a practical method to analyse heating consumption. The methodology involves the analysis of hourly total heating demand and outdoor temperature measurements to create and calibrate Energy Signature Curves. Importantly, the building Energy Signature Curve is calibrated independently for each daily hour, resulting in a subset of 24 data-driven models. After calibration, a disaggregation algorithm is proposed to distinguish space heating from domestic hot water usage. The method also evaluates the building’s thermal inertia, examining the correlation between the hourly global energy consumption and the outdoor air temperature moving average. It also presents a methodology for improving the DHW heat consumption model. The methodology is applied to a case study of 51 buildings in Tartu, Estonia, with complete yearly demand measurements from the district heating operator. Thanks to the hourly calibration approach, R2 is 0.05 higher on average than the yearly Energy Signature Curve approach. The difference between estimated and measured annual energy consumption is 8% on average, demonstrating the practicality and effectiveness of the proposed method.

Publisher

EDP Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3