Vulnerability of volcanic loose soils having cementation and crushable particles

Author:

Sato Itsuki,Kuwano Reiko

Abstract

In Japan, a multitude of slope disasters occur annually, resulting in often severe loss of human life. On occasion, disasters that occur at very gentle slopes and disasters that flow long distance, associated with destructive energy, are observed. In such cases, the trigger layer often consists of volcanic soils with extremely high void ratios and external triggers, including earthquake or heavy rainfall, increase the risk of slope disasters. These volcanic soils are often characterised by an extremely loose structure and are either retained mainly by weak cementation or are composed of crushable particles having intra voids. Although the cause of destructive long-distance flow has been explained by liquefaction, there are some observed disasters in which the trigger layer was not fully saturated, i.e. liquefaction should not be considered as a major cause. Focusing on the fact that long-distance flow or gentle slope flow, disasters are triggered by volcanic soil layers of extremely loose structure, artificial loose soil samples were prepared in the laboratory. These samples were prepared with cementation between particles and with crushable particles. In this study, deformation and strength characteristics of the extremely loose soils were investigated by conducting CD triaxial tests. It is revealed that such extremely loose soils can be vulnerable after the weakly cemented structure collapses as a result of external factors such as earthquakes.

Publisher

EDP Sciences

Reference5 articles.

1. Murata H., Hyodo M., Yasufuku N., J.JSCE, No. 382 / III-7,131-140 (1987)

2. Kusakabe O., Maeda Y., Ohuchi M., Hagiwara T., J.JSCE, No. 439 / III-17, pp. 69-78 (1991)

3. Yang J., Moroto N., J.JSCE, No. 617 / III-46, 175-189 (1999)

4. Nishioka T., Shibuya S., the Japanese Geotechnical Society, 65-1(708)(2017)

5. Miura S., Yagi K., Characterization and Engineering Properties of Natural Soils, p 1169-1204 (2003)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3