Application features of microarc oxidation technology

Author:

Novikova Olga,Bolotov Aleksander,Novikov Vladislav

Abstract

The technology of microarc oxidation of valve metals is one of the promising methods for engineering the working surface of friction units of modern technology. As a result of the versatility of the technology, it is possible to obtain composite ceramic coatings and materials of various types. Their properties are set by the electrical modes of material formation, the chemical composition of the electrolyte, and the possible further modification of the ceramic matrix with micro- and nanosized tribofillers. Based on the practical results of their research in the field of creating coatings of various types by microarc oxidation, an analysis is given of the main areas of application of microplasma electrolytic oxidation technology, their advantages over other methods of surface modification, structure and properties of the materials obtained. It is possible to distinguish the modification of the friction surface of a part by the method of microplasma electrolytic oxidation in order to increase its hardness and wear resistance. Good results were obtained in increasing the wear resistance of the hardened working surface of the spinning machine parts, the number of equipment repairs was reduced by more than 20 times. The use of microarc oxidation is promising for the preparation of composite coatings, which are a ceramic matrix in which solid lubricating dispersed particles are embedded. The technology of forming a matrix on aluminum, modified with dispersed magnetite, graphite and molybdenum disulfide, has been developed. According to the results of comparative tribotechnical tests, it was found that the intensity of linear wear of the material filled with MoS2 is 3 times, and Fe3O4 - 1.6 times lower than that of the coatings without filler. Based on the technology of microplasma electrolytic oxidation, an original technology has been developed for obtaining mineral-ceramic material, which is a matrix of aluminum oxide and dispersed diamond inclusions. Abrasive wheels made from this material have a consistently high volumetric cutting ability, 1.5-3.5 times higher than the traditional analogues and are characterized by high diamond retention. The possibilities of microplasma oxidation have not yet been fully explored, the most promising direction being the creation of nanostructured coatings for a specific technological task.

Publisher

EDP Sciences

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3