Effect of particle size of colloidal nano-silica on the properties of the SCM based concrete

Author:

Kumar Kakara S.J.,Rao M.V. Seshagiri,Reddy V. Srinivasa,Shrihari S.,Hugar Prashant

Abstract

In the current study, effect of particle size of colloidal nano-silica on the properties of the SCM based concrete is studied. The nano-silica particle sizes adopted for the study are 30nm, 60nm and 90 nm. The M20 grade concrete system is made up of cement (C), fly ash (FA), micro-silica (mS) and nano-silica (nS). Compressive strength test at 60 days and pore structure analysis are carried out for C-FA-mS-nS system. The hydration of Portland cement is significantly influenced by the colloidal nanosilica (CNS) particle size. High doses of nS content boost the pozzolanic reaction and the creation of CSH and CASH gels, but they also have a negative impact on the strength development of the material by increasing microcracking due to the self-desiccation effect. The addition of nanosilica to concrete can significantly enhance its qualities after hardening because it ensures the pozzolanic reaction, the seeding effect, which both increase the degree of hydration, and the filling effect, which can fill the internal porosity defects. The cement-mS system's impermeability was greatly improved by the nS because it improved the microstructure, increased the complexity of the pore structure, and refined the pore structure.

Publisher

EDP Sciences

Subject

General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Effect of calcination on the physical, chemical, morphological, and cementitious properties of red mud;Journal of Sustainable Construction Materials and Technologies;2023-12-19

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3