Malware Detection Using Binary Visualization and Neural Networks

Author:

Jonnala Yamini Devi,Mahajan Vamshi Sai,Menon Dheeraj,Kothakapu Sampath Reddy,Chandamollu Sumanth Reddy

Abstract

Any programme or code that is damaging to our systems or networks is known as Malware or malicious software. Malware attempts to infiltrate, damage, or destroy our gadgets such as computers, networks, tablets, and so on. Malware may also grant partial or total control over the affected systems. Malware is often detected using classic approaches such as static programme analysis or dynamic execution analysis. The exponential rise of malware variations requires us to look beyond the obvious in order to identify them before they do harm or take control of our systems. To address these drawbacks, malware detection based on binary visualisation followed by the deployment of powerful machine learning techniques such as Convolutional Neural Networks (CNN) performs better than the ones we now use. We use these discoveries in our efforts to identify malware in different files and websites. We strive to complete the objective by employing representations of malware software binaries. With this concept, we can construct a better bridge for developing a functioning model that can identify malware in real time.

Publisher

EDP Sciences

Subject

General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3