Optimize the process parameters of wire EDM and to analyse the welding characteristics of tig welding joints using AISI 308

Author:

Kumarswamy Y.,Ganesh P. Durga,Kumar K. Ravi,Sai Varun S.,Vamsi G. Jagan,Phaneendra Y.

Abstract

Wire Cut EDM technique is widely used to make small and precision cuts. Generally, a material with fragile geometry and hard structure is cut using a wire cut EDM. The main advantage of this method is that, it is a non-conventional machining process therefore it does not have a contact between the tool (wire) and the workpiece. This advantage gives it an edge over other machining techniques and it makes the process capable of machining even the weak structured and delicate materials. In the present experimental work, by using various machining parameters (Pulse on Time, Pulse off Time, and Wire Speed) were optimized using Taguchi’s L9 orthogonal array. Welding is most the important industrial processes, therefore lots of techniques have been developed to get an efficient and low-cost welding process for different types of materials. In this we will discuss about the welding characteristics of the of tig welding joints produced using different currents. That is, by changing the voltages for the number of passes to improve and strengthen the welded joint The research work aims to optimize the wire cut EDM process parameters for AISI 308 steel and analyze the welding characteristics of Tungsten Inert Gas (TIG) welded joints of the same material. The study intends to find the optimum combination of process parameters that would lead to the highest material removal rate, lowest wear rate, and best tensile properties of the material.

Publisher

EDP Sciences

Subject

General Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Recent Research in Wire Cut Electrical Discharge Machining Process;Journal on Materials and its Characterization;2024-03-07

2. Maximizing machinability at AA8014 joints by hybrid reinforcement in friction stir processing;International Journal on Interactive Design and Manufacturing (IJIDeM);2024-02-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3