Solution of boundary problem in mathematics

Author:

Hajiyeva R.J.,Zeynalov R.M.,Ahmadova E.N.

Abstract

It is known that the Steklov problem is understood as a spectral problem in which the spectral parameter is included only in the boundary condition [2]- [4]. Problems of this type can be considered both for ordinary differential equations and for special differential equations. So, for the ordinary differential equation, the spectrum can be finite in general in such problems [9]. In Steklov problems for special differential equations, problems for elliptic type equations are considered [5]-[7].

Publisher

EDP Sciences

Reference29 articles.

1. Zeynalov R.M.. The Steklov problem for the Laplace equation in an unbounded domain. BDU, Baku, Azerbaijan, 2010. c. 199–202.

2. Aliev N.A., Mustafaeva Y.Y., Murtuzaeva S.M. Procedings of the Institute of Applied Mathematics, Baku, Azerbaijan 1. 2, 2012 pp. 153–162

3. Aliyev N.A., Zeynalov R.M. Fredholm property of the Steklov problem for the Cauchy–Riemann equation with the Lavrentyev–Bitsadze condition. News of Pedagogical University, Baku, 2012, pp. 16–19.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3