Energy Monitoring System for Existing Buildings in Indonesia

Author:

Sesotya Utami Sentagi,Faridah ,Azizi Na’im A.,Kencanawati Erlin,Tanjung M. Akbar,Achmad Balza

Abstract

Current studies conducted by JICA, AMPRI and IFC-World Bank, reported that large commercial buildings in Indonesia are not energy and water efficient. One of the cause is the lack of regulation. Meanwhile, effective regulations to reduce energy and water consumption are the concern mostly in a new building to obtain a building permit. This strategy is understandable as retrofitting existing buildings are often more difficult to be implemented, and enforcement is still a major issue in Indonesia. Local governments are currently working on streamlining building permit process as well as developing an online monitoring system for existing buildings. By applying a Building Energy Management System (BEMS) enables to reduce energy consumption up to 15%. An energy monitoring system was designed and installed through this research for Department of Nuclear Engineering and Engineering Physics (DNEEP) building, Faculty of Engineering, Universitas Gadjah Mada. It is a 20 years old two-story building used for educational activities, which consist of classrooms, laboratories, offices and storage spaces. An audit energy was done recently in 2015 where an energy consumption of 261.299,636 kWh/year.m2 was reported. In the existing condition, a power meter is inaccessible and therefore, the only feedback of occupancy behavior in the energy consumption is through the electricity bill. The previous study has shown that building occupants would behave more efficiently if the amount of energy used is notified, and the amount of energy savings are recorded. However, these energy monitoring systems are considered expensive and uniquely tailored for every building. This research aims to design and install a cost effective BEMS based on occupant’s satisfactory assessment of the lighting, acoustics, and air conditioning quality. The data will be used as a decision supporting system (DSS) by building management through the use of a GUI. The design of the interface was based on a survey result from the prospective users. Installed energy monitoring system uses a current sensor with an accuracy of 98% and a precision of 0.04 A while the voltage sensor with an accuracy of 98% and a precision of 0.58 V. The performance testing shows that the number of web clients influences delay of data transmission. The result of the survey shows that GUI is categorized as fair in design without a significant difference between the perceptions of users with and without survey supervision.

Publisher

EDP Sciences

Reference11 articles.

1. Darby S. and others, The effectiveness of feedback on energy consumption, Rev. DEFRA Lit. Metering Billing Direct Disp 486, 2006, (2006)

2. Kempton W., Darley J.M., Stern P.C., Am. Psychol 47, 1213-1223 (1992)

3. Josue J.G., Pina J.M., Neves M.V., Doctoral Conference on Computing Electrical and Industrial Systems 2011, 437-444 (2011)

4. Norris D., The Internet of Things: Do-It-Yourself at Home Projects for Arduino, Raspberry Pi and BeagleBone Black (McGraw-Hill Education, New York, 2015)

5. Qu Y., Wang H., Lund S.M., Chiang H.D., Wang T., Design and implementation of a Web-based Energy Management Application for smart buildings, 2013 IEEE Electrical Power Energy Conference (EPEC), 1-6 (2013)

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3