Rapid in situ determination of ClO2 in drinking water by improved solid DPD spectrophotometry

Author:

Zhang Qianqian,Jia Lijun,Hao Tianli,Zeng Ke

Abstract

This research aims to realize the rapid detection of ClO2 content in drinking water by adopting improved solid DPD. This method is fast and convenient with low cost and less waste liquid. The results show that this method has good precision and sensitivity. The linear correlation coefficients of the cubic regression equation were all greater than 0.999. The detection limit of the method was 0.002mg/L ClO2. The relative standard deviations (RSD) of seven parallel tests were between 1.37% and 8.87%, and the relative errors were small. The recovery rate was 96.67~110%. The method could be used for the direct determination of water samples with a mass concentration of 0.02mg/L~2.00mg/L in drinking water after ClO2 disinfection.

Publisher

EDP Sciences

Reference12 articles.

1. Li SQ., Zeng YC. (2002) Introduction to Ecological Environmental Protection. Wuhan University of Technology Press, Wuhan.

2. Xiao R,. Chu WH. (2021) Comparison and implications of disinfectants by-products control indicators in global drinking water standards. https://doi.org/10.13198/j.issn.1001–6929.2020.

3. Cumulative health risk assessment of disinfection by-products in drinking water by different disinfection methods in typical regions of China

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3