Image processing of transport objects using neural networks

Author:

Loktev Daniil,Lokteva Olga

Abstract

The paper is devoted to the development of an automated system model for monitoring and control of transport objects, based on the processing of images obtained using photo or video detectors, which can be installed on a fixed base near the transport highway for monitoring traffic flows and individual vehicles, and on rolling stock for monitoring transport infrastructure facilities. Image processing occurs by determining the function of blurring the image of an object, algorithms for extracting an image of an object using cascading classifiers and characteristic points, depending on the behavior of the object itself, as well as using a convolutional neural network. Machine learning of the convolutional neural network occurs when using the back propagation method of error. A neural network allows detecting objects of certain classes in the image, determining the parameters of their state and behavior. The proposed model with a movable hardware, which is responsible for obtaining the primary image, was tested on a section of the railway track to identify deviations of the state of the superstructure from the content standards, and a system with stationary photodetectors was tested to determine the parameters of moving vehicles. The obtained results of processing experimental data allowed drawing qualitative conclusions about the possibility of using the proposed algorithms and schemes for monitoring and control of various transport objects.

Publisher

EDP Sciences

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Recognizing Human Emotions Using a Convolutional Neural Network;2022 4th International Youth Conference on Radio Electronics, Electrical and Power Engineering (REEPE);2022-03-17

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3