The process of increasing the stable operation of the working body in crank presses

Author:

Kobzev Kirill,Goncharova Yuliya,Kobzeva Nataliya

Abstract

The article considers the study of the synthesized concept of frictional contact of solids in crank presses. As a result of the analysis the possibility of obtaining the maximum load characteristic of the friction contact within the interval of variation of the friction coefficient has been established. The possibility of equality of the values of the friction force of the friction contact at the boundaries of the indicated interval in the presence of a maximum and the achievement of their greatest stability under these conditions is also revealed. As result the upgraded concept of frictional contact allows theoretically to obtain a very high stability of the friction force, however, due to the relatively large value of the angle and force parameter, it is used inefficiently. A necessary condition for the absence of zero reversal of the output parameter of the main friction group of the friction contact in the interval of variation of the friction coefficient and the presence of the maximum function of the load capacity of the friction contact is the transfer of its full load by the sensitive elements of the additional friction group. An additional condition for the existence of a maximum is the need for the sensitive elements of the main friction group to transfer part of its full load at an equal number of friction pairs of both friction groups, and for the sensitive elements to transfer the full load of the main friction group at a lower number of friction pairs than in the additional friction group.

Publisher

EDP Sciences

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Analysis of the design of the high-speed hydraulic drive of the reciprocating motion of the perforating press hammer;IOP Conference Series: Materials Science and Engineering;2020-12-31

2. Industrial injuries at the enterprise;IOP Conference Series: Materials Science and Engineering;2020-12-01

3. Labor protection of operators and workers at a machine-building enterprise;IOP Conference Series: Materials Science and Engineering;2020-12-01

4. The purpose and objectives of the labor protection service at the enterprise;IOP Conference Series: Materials Science and Engineering;2020-12-01

5. Method for determining malfunctions of hydraulic drives of high-speed equipment;IOP Conference Series: Materials Science and Engineering;2020-12-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3