The trade-off between deep energy retrofit and improving building intelligence in a university building

Author:

Jradi Muhyiddine

Abstract

In the last three decades, deep energy retrofit measures have been the standard option to improve the existing Danish building stock performance, with conventional techniques including envelope constructions insulation, windows change and lights replacement. While such techniques have demonstrated large technical and economic benefits, they may not be the optimal solution for every building retrofit case. With the advancement in the field of smart buildings and building automation systems, new energy performance improvement measures have emerged aiming to enhance the building intelligence quotient. In this paper, a technical evaluation and assessment of the trade-off between implementing deep energy retrofit techniques and improving building intelligence measures is provided. The assessment is driven by energy simulations of a detailed dynamic energy performance model developed in EnergyPlus. A 2500 m2 university building in Denmark is considered as a case study, where a holistic energy model was developed and calibrated using actual data. Different performance improvement measures are implemented and assessed. Standard deep energy retrofit measures are considered, where the building intelligence improvement measures are in compliance with the European Standard EN 15232 recommendations. The overall assessment and evaluation results will serve as recommendations aiding the decision to retrofit the building and improve the performance.

Publisher

EDP Sciences

Reference16 articles.

1. ObepME: An online building energy performance monitoring and evaluation tool to reduce energy performance gaps

2. Energy system analysis of 100% renewable energy systems—The case of Denmark in years 2030 and 2050

3. Energy Policy Toolkit on Energy Efficiency in New Buildings - Experiences from Denmark, The Danish Energy Agency, (2015). https://ens.dk/sites/ens.dk/files/Globalcooperation/to ol_ee_byg_web.pdf.

4. An optimization framework for building energy retrofits decision-making

5. Strategy for energy renovation of Buildings, Danish Ministry of Climate, Energy and Building. https://ec.europa.eu/energy/sites/ener/files/document s/2014_article4_en_denmark.pdf, May (2014).

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3