The effect of PCM layer on the natural air flow movement in the façade cavity of BiPV system

Author:

Čurpek Jakub,Čekon Miroslav

Abstract

The incorporation of a phase change material (PCM) in building integrated photovoltaic (BiPV) façade can be applied to improve its thermal performance including more effective electrical conversion, however their real interaction needs to be investigated at adequate level. The aim of the presented paper is focused on the application of a material with high latent heat capacity based on PCM in the structure of double-skin BiPV façade. The key aspect concerns on an analysis of natural air flow movement affected by the storing/releasing heat energy from the PCM during daytime/night-time of days. The experimental campaign was performed using an experimental outdoor test cell where two full-scale façade samples (reference BiPV and experimental BiPV/PCM) were investigated. The strong effect of thermal inertia of the PCM identified by experimental measurements was observed on the façade air cavity temperature and air flow movement. Experimental results revealed that natural air flow regimes in façade cavities are nearly equal in the daytime, but in the night-time are totally different. The thermal emission from PCM increase the air temperature in the façade cavity and increase the velocity of air flow movement (PCM started solidified), mainly in the night-time.

Publisher

EDP Sciences

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3