Identification of arabica coffee post-harvest processing using a convolutional neural network

Author:

Effendi Mas’ud,Faqy Maulana Muhamad,Santoso Imam,Astuti Retno,Mahmudy Wayan Firdaus

Abstract

Indonesia’s economy is greatly boosted by coffee, one of its flagship commodities. The post-harvest processing of coffee involves various processes, and the different methods have a crucial connection to the subsequent stages. Digital image analysis using Convolutional Neural Network (CNN) methods can be utilized to improve the identification of coffee beans. This study uses CNN with the ResNet-18 and MobileNetV2 architectures for image analysis. The research results show that the MobileNetV2 architecture produces the best accuracy of 98.89% at a data proportion of 70:20:10, and the ResNet-18 architecture produces the best accuracy of 99.56% at a data proportion of 50:25:25. This shows that both of them can handle differences in data proportions well in identifying the post-harvest process of Arabica coffee. The choice between the two can be considered based on available computational resources, desired model weight size, and relevant data proportion requirements for the desired application.

Publisher

EDP Sciences

Reference13 articles.

1. BPS-Statistics Indonesia, Indonesian coffee statistics 2021 (BPS, Jakarta, 2022)

2. Wintjen M., Practical data analysis using jupyter notebook (Packt Publishing, Birmingham, 2020)

3. Phicos, Advokasi barista (Phicos, Jakarta, 2021)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3