Image preprocessing techniques applied on NIR images for fruit bruise detection

Author:

Ünal Zeynep

Abstract

This study investigates the transformative potential of image preprocessing techniques when applied to near-infrared (NIR) images for early bruise detection. It emphasizes the nuanced selection of filters to retain essential image features while accentuating bruise characteristics. Filters as noise-reduction tools, rendering bruises more visible without erasing critical details. Subsequently, the limitations of conventional edge detection filters were examined such as Sobel, Prewitt, and Canny, which excel in outlining fruit edges but fall short in delineating bruises. Adaptive thresholding methods were introduced, exemplified by Otsu’s, showcasing their capacity to distinguish objects from backgrounds while acknowledging their challenge in preserving crucial edge pixels. Image enhancement techniques, such as Histogram Equalization, Contrast Stretching, and Sigmoid Correction, enhance fruit edge visibility and elevate bruise detection. In the frequency domain, filters such as Ideal Lowpass, Bandpass, and Highpass were harnessed to accentuate diverse bruise types. The Butterworth filter was introduced, capable of concurrently highlighting all relevant features, a pivotal innovation in comprehensive bruise detection. Through extensive experimentation and analysis of NIR images of various fruit varieties, including plums, peaches, and apples, our findings underscore the significance of tailored preprocessing techniques for optimal fruit bruise detection. These insights offer promise for agricultural industries and quality control processes seeking to enhance fruit quality assessment.

Publisher

EDP Sciences

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3