VINESYM: an integrated vine and grapevine mathematical model for vegetative development and production quality forecast

Author:

Faluomi Vittorio,Borsi Iacopo

Abstract

The present work deal with the development of a mathematical model able to predict, using time dependent meteorological data, soil and vine characteristics, the growing of a vine and grapevine in terms of leaf area, shoot length, fruit and vegetative mass and finally sugar and acid content of the berry. The model is based upon a source-sink relationship approach, integrated with a soil-atmosphere model, where water accumulation in soil, sap flow across vine are coupled with potential carbon demand functions to directly consider possible water and temperature stresses. The model includes also a N2 sink-source approach, limiting growth rate following N2 availability. Finally, a mechanistic model to evaluate sugar accumulation and a correlation-based model for acid concentration evaluation in the berry is coupled with vegetative growth, to provide the information required to manage vineyard operations and evaluate the impact to the potential wine quality. The primary distinctive trait of this model is then the integration and feedback among prediction of grapevine quality model (sugar an acid content) and vegetative growth model, using a common initial ad boundary conditions data set.

Publisher

EDP Sciences

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3