Variable selection in Poisson regression model based on chaotic meta-heuristic search algorithm

Author:

Alangood Heyaa Nadhim Ahmed,Algamal Zakariya Yahya,Khaleel Mundher Abdullah

Abstract

By determining the most significant variables that are connected to the response variable, Increasing prediction accuracy and processing speed can be achieved through the process of variable selection. Regression modeling has drawn a lot of interest from several scientific domains. One of the most effective nature-inspired algorithms that has been suggested recently and can be used effectively for variable selection is the Firefly algorithm. The chaotic firefly algorithm is presented in this work to carry out the Poisson regression model's variable selection. A simulation study is carried out to assess how well the suggested strategy performs in terms of variable selection criteria and prediction accuracy. Its effectiveness is also contrasted with alternative approaches. The outcomes demonstrated the effectiveness of our suggested strategies, which beat other widely used approaches.

Publisher

EDP Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3