A Survey Study of the Deep Learning for Convolutional Neural Network Architecture

Author:

Mohammed Alkhaldi Tabark,Essam Noor,Ali Talib Al-Khazaali Ahmed,Ali Alhamdany Marwa,Assam Hataf Baqar,Ramadhan Ali J.,TaeiZadeh Ali

Abstract

The deep learning (DL) computer paradigm has been the industry standard for machine learning (ML) during the past few years. It has gradually become the most widely used computational technique in machine learning. One of the benefits of DL is its ability to learn massive amounts of data. Deep learning has seen tremendous growth in the last several years and has been successfully used for many traditional applications. More importantly, DL has outperformed popular machine learning algorithms in several domains, such as cybersecurity, bioinformatics, robotics, etc. The field remains mostly uneducated although it has been contributed to several works reviewing the State-ofthe- Art on DL, each of which only covered a specific aspect of the field. We thus propose a more holistic approach to this contribution, providing a more suitable basis upon which to construct a thorough understanding of DL. Concerning the most significant DL features, including the most recent advancements in the field, this evaluation specifically aims to provide a more thorough survey. This study specifically describes the kinds of DL networks and techniques, as well as their significance. The most common type of DL network, convolutional neural networks (CNNs), is then presented, and the evolution of it.

Publisher

EDP Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3