In-silico analysis of aging mechanisms of action potential remodeling in human atrial cardiomyocites

Author:

Nesterova Tatyana,Shmarko Dmitry,Ushenin Konstantin,Solovyova Olga

Abstract

Electrophysiology of cardiomyocytes changes with aging. Agerelated ionic remodeling in cardiomyocytes may increase the incidence and prevalence of atrial fibrillation (AF) in the elderly and affect the efficiency of antiarrhythmic drugs. There is the deep lack of experimental data on an action potential and transmembrane currents recorded in the healthy human cardiomyocytes of different age. Experimental data in mammals is also incomplete and often contradicting depending on the experimental conditions. In this in-silico study, we used a population of ionic models of human atrial cardiomyocytes to transfer data on the age- related ionic remodeling in atrial cardiomyocytes from canines and mice to predict possible consequences for human cardiomyocyte activity. Based on experimental data, we analyzes two hypotheses on the aging effect on the ionic currents using two age-related sets of varied model parameters and evaluated corresponding changes in action potential morphology with aging. Using the two populations of aging models, we analyzed the agedependent sensitivity of atrial cardiomyocytes to Dofetilide which is one of the antiarrhythmic drugs widely used in patients with atrial fibrillation.

Publisher

EDP Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3