Author:
Mokrousova Victoria,Nedorubova Irina,Vasilyev Andrey,Kuznetsova Valeriya,Mironov Anton,Khvorostina Maria,Bukharova Tatyana,Popov Vladimir,Goldshtein Dmitry,Losev Fedor,Kulakov Anatoly
Abstract
Three-dimensional scaffolds were made from a solution of poly(lactide-co-glycolide) mixed with tetraglycol using antisolvent 3D printing. The elastic properties and the structure of the obtained matrices were studied. MTT-test and staining with PKH-26, Calcein-AM, DAPI with subsequent fluorescence microscopy were used to study biological properties. The three-dimensional scaffolds had good mechanical properties. Young’s modulus value was 18±2 MPa, tensile strength was 0.43±0.05 MPa. The relative survival rate of cells after the first day was 99.58±2.28%, on the 14th day – 98.14±2.22%. The structure of the scaffold promoted cell adhesion and spreading on its surface. The poly(lactide-co-glycolide) matrices produced by antisolvent printing have high porosity, biocompatibility and good mechanical properties. It is allowed to use them in the future as a basis for personalized constructions for the replacement of extensive bone defects.