Protein Interaction Prediction Method Based on Feature Engineering and XGBoost

Author:

Zhao Xiaoman,Wang Xue

Abstract

Human protein interaction prediction studies occupy an important place in systems biology. The understanding of human protein interaction networks and interactome will provide important insights into the regulation of developmental, physiological and pathological processes. In this study, we propose a method based on feature engineering and integrated learning algorithms to construct protein interaction prediction models. Principal Component Analysis (PCA) and Locally Linear Embedding (LLE) dimensionality reduction methods were used to extract sequence features from the 174-dimensional human protein sequence vector after Normalized Difference Sequence Feature (NDSF) encoding, respectively. The classification performance of three integrated learning methods (AdaBoost, Extratrees, XGBoost) applied to PCA and LLE features was compared, and the best combination of parameters was found using cross-validation and grid search methods. The results show that the classification accuracy is significantly higher when using the linear dimensionality reduction method PCA than the nonlinear dimensionality reduction method LLE. the classification with XGBoost achieves a model accuracy of 99.2%, which is the best performance among all models. This study suggests that NDSF combined with PCA and XGBoost may be an effective strategy for classifying different human protein interactions.

Publisher

EDP Sciences

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3