Author:
Faizrakhmanov Ramil N.,Larina Yuliya V.,Ezhkova Asiya M.,Ezhkov Vladimir O.,Semakina Ekaterina
Abstract
The liver is considered to be the main organ in the processes of regulating metabolism, neutralizing toxins and maintaining the constancy of the internal environment of the body. The goal of the research was to study the morphofunctional state of the liver under the effect of different concentrations of nanostructured sapropel. The experiments were carried out on non-linear (outbred) white mice weighing 24.9 ± 1.8 g. Twelve mature males were allotted to four groups. Mice of the experimental groups I, II and III intragastrically through the atraumatic flexible probe were once injected with nanostructured sapropel (particle size of 45.0–180.0 nm) in the following doses: lethal – 3.0 g/kg of the body weight; toxic – 1.8 g/kg of the body weight and safe – 0.6 g/kg of the body weight. Mice of group IV served as a control one and received deionized water in the same way. The choice of liver as the organ for analyzing is justified by the fact that the liver did not have direct contact with sapropel nanoparticles in the process of its intragastric administration into the body of white mice. Four hours after the introduction of nanostructured sapropel, three mice from each group were killed by cervical dislocation. After preparation and staining with hematoxylin and eosin, identical pieces of the liver were evaluated using light microscopy. Histological studies have established that the introduction of a lethal dose of nanostructured sapropel caused hemodynamic vascular disorders; focal necrosis and necrobiosis of hepatocytes were also observed in the research. Furthermore, the research noted a migration of reticuloendotheliocytes to the centrolobular regions of the lobules and enhancement of their activity. The microstructure of the liver when introducing a toxic dose of nanostructured sapropel was characterized by moderate plethora of sinusoidal capillaries, deformation of hepatocytes, focal destruction with the development of karyopiknosis, karyorhexis and karyolysis. The study revealed the activation of reticuloendothelial cells. Liver histology when introducing a safe dose of nanostructured sapropel was characterized by the preservation of the integrity of the structural elements, polyploid (two- and multi-core) hepatocytes were identified in the periportal part of the lobes. The changes in the structural and functional state of the mice liver were found to be depending on the dose of the nanostructured sapropel.