Lightweight Federated Transfer Learning for Plant Leaf Disease Detection and Classification across Multiclient Cross-Silo Datasets

Author:

Choubey Shilpi,Divya

Abstract

Plant leaves and crops play a crucial role as a primary food source globally, making significant contributions to dietary iron intake (9%) and energy consumption (23%) per capita in the Asian region. Bacterial, yeast, and other microbial diseases pose significant challenges to farmers as they detrimentally impact plant health and reduce crop productivity. The manual diagnosis of these diseases poses a considerable challenge, particularly in regions with a scarcity of professionals specializing in leaves and crop protection. Automating leaf disease detection and providing easily accessible decision-support resources are crucial for facilitating efficient leaf protection strategies and mitigating crop damage. Despite multiple classification methods for diagnosing leaf diseases, a secure and accurate approach that fulfills these requirements has not yet been identified. This paper presents an architectural framework called Lightweight Federated Transfer Learning (LFTL) that addresses the challenge of Leaf Disease Detection and Classification (LDDC) while ensuring data privacy limitations are upheld. A dataset consisting of leaf disease images has been compiled, characterized by an imbalance in the distribution of the diseases. The collection includes four conditions: bacterial decay, brown spot, blast, and tungro, corresponding image counts of 1695, 1551, 1711, and 1419, respectively. Following the preprocessing stage, the LFTL framework was tested using both Independent and Identically Distributed (IID) and non-IID datasets. The study commenced with an efficacy evaluation of the Convolutional Neural Network (CNN) and eight TL models in the LDDC. The framework’s performance was evaluated across different circumstances and compared to conventional and federated learning models. The study’s findings revealed that the LFTL framework outperformed traditional distributed deep-learning classifiers, thus demonstrating its efficacy in individual and multiple client scenarios.

Publisher

EDP Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3