Interpretable AI models for predicting distant metastasis development based on genetic data: Kidney cancer example

Author:

Boyko Maria,Antipushina Ekaterina,Bernstein Alexander,Sharaev Maxim,Apanovich Natalya,Matveev Vsevolod,Alferova Vera,Matveev Alexey

Abstract

Kidney cancer has a high metastatic potential with up to 30% of patients developing distant metastasis after surgery. We assessed the value of AI models in predicting the metastatic potential of clear cell renal cell carcinoma (ccRCC), based on the genetic data. Tissue samples from patients with both metastatic and non-metastatic squamous cell carcinoma were analyzed, focusing on the expression and methylation levels of specific protein-coding (PC) and microRNA (miRNA) genes. Using quantitative PCR and data classification techniques, we found a correlation between metastasis and reduced expression of PC-genes CA9, NDUFA4L2, EGLN3, and BHLHE41, as well as increased methylation in miRNA genes MIR125B-1, MIR137, MIR375, MIR193A, and MIR34B. AI models were built for predicting distant metastases based on the expression values and methylation status of selected genes. One model is based on solving a regression problem and is non-interpretable, while another one is based on proposed decision rules and is interpretable. The quality of the models was assessed using sensitivity and specificity metrics, and cross-validation technology was used to ensure the reliability of the results.

Publisher

EDP Sciences

Reference10 articles.

1. Epidemiology and Prevention of Renal Cell Carcinoma

2. Ljungberg B. (Chair), Albiges L., Bedke J., Bex A. (Vice-chair), Capitanio U., Giles R. H. (Patient Advocate), Hora M., Klatte T., Marconi L., Powles T., Volpe A.. Guidelines associates: Abu-Ghanem Y., Campi R., Dabestani S., Fernández-Pello Montes S., Hofmann F., Kuusk T., Tahbaz R.. EAU Guidelines. Edn. presented at the EAU Annual Congress Milan, 2023, 100. ISBN 978-94-92671-19-6.

3. Kaprin A. D., Starinsky V. V., Shakhzadova A. O. Malignant neoplasms in Russia in 2020 (morbidity and mortality). P. A. Herzen MNIOI - branch of FGBU “NMRC Radiology” of the Ministry of Health of the Russian Federation, 2021, 252.

4. Wan B., Yang Y., Zhang Z.. Identification of differentially methylated genes associated with clear cell renal cell carcinoma and their prognostic values. J Environ Public Health, 8405945 (2023). https://doi.org/10.1155/2023/8405945PMID:36793506.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3