Author:
Dudoladov Aleksandr,Alekhina Marina,Revina Aleksandra,Souvorova Olga
Abstract
On the basis of granular synthetic zeolites NaY, HY, and ZSM-5, adsorbents containing nanoparticles of silver, cobalt, molybdenum, and tungsten were obtained. The samples have a lower surface polarity in comparison with the initial zeolites, which is reflected in the selectivity of a number of samples with respect to argon. This is due to the fact that the argon molecule interacts with zeolites only through nonspecific forces. Modification was performed by interacting with reverse-micellar solutions of nanoparticles. The actual sizes of metal particles and their distribution over the surface of the modified samples of zeolites have been determined by the method of transmission electron microscopy. The samples’ equilibrium adsorption capacities for oxygen and argon (25°С and atmospheric pressure) and the separation coefficient of the argon–oxygen mixture as the ratio of Henry’s coefficients have been determined. It has been demonstrated that samples of the NaY zeolite modified with silver nanoparticles have the separation coefficient value of the argon–oxygen gas mixture equal to 1.6.