Influence of the genus Bacillus bacteria on the content of H2O2 and the activity of hydrolases and their inhibitors in potato plants during Phytophthora infestans Mont. de Bary infection

Author:

Yarullina Lyubov G.,Sorokan Antonina V.,Tsvetkov Vyacheslav O.,Burkhanova Guzel F.,Kalatskaja Joanna N.

Abstract

The authors studied the effect of treatment with bacteria Bacillus subtilis Cohn (strains 26D) and B. thuringiensis Berliner (strain B-6066) on the hydrogen peroxide (H2O2) content, the activity of hydrolytic enzymes and their protein inhibitors in potato plants (Solanum tuberosum L.) in connection with development of resistance to the late blight pathogen - oomycete Phytophthora infestans Mont. de Bary. Studies were carried out on potato plants of the susceptible Early Rose potato cultivar that were treated with a suspension of B. subtilis and B. thuringiensis bacteria (108 cells/ml) and infected with P. infestans (107 spores/ml). A decrease in the degree of leaf damage by oomycete was revealed under the influence of the genus Bacillus bacteria, depending on the strain. The increase in potato resistance to P. infestans infection was mediated by the stimulating effect of the B. subtilis 26D and the B. thuringiensis B-6066 bacteria on the concentration of H2O2, the modulating effect on the activity of hydrolytic enzymes and the enhancement of the transcriptional activity of protease and amylase inhibitor genes in plant tissues. Differences in the degree of activation of the transcriptional activity of hydrolase inhibitor genes by the B. subtilis 26D and the B. thuringiensis B-6066 bacteria were revealed, which suggests differential ways of forming the potato resistance to P. infestans under their influence.

Publisher

EDP Sciences

Reference31 articles.

1. Rais A., Jabeen Z., Shair F., Hafeez F.Y., Hassan M.N., PLoS One 12 (2017). DOI:10.1371/journal.pone.0187412

2. Melentiev A.I., Aerobnye sporoobrazuyushchie bakterii Bacillus Sohn v agroekosistemah [Aerobic spore-forming bacteria Bacillus Cohn in agroecosystems] (Nauka, Moskow, 2007)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3