Author:
Zarraonaindia Iratxe,Cantos-Villar Emma,Diez Ana,Mena-Petite Amaia,Perez-Alvarez Eva,Cretazzo Enrico,Pébarthé-Courrouilh Anthony,Bertazzon Nadia,Lacuesta Maite,Puertas Belén,Perez-Lopez Usue,Cluzet Stéphanie,Hachero-Cruzado Ismael,José Córdoba-Granados Juan
Abstract
The outlook for climate change foresees major impacts on vineyards worldwide, shifting pathogens distribution and dynamics demanding more intense plant protection measures in certain regions, increasing viticulture's dependence on phytochemicals and pesticides. However, the European Commission is applying restrictions on their use, encouraging the development of more sustainable strategies efficient for disease control. Seaweeds represent an ecological alternative for a more sustainable production. Previous studies have shown that algae extracts contain compounds capable of reducing the abundance of plant fungal pathogens. Despite it, little is known about the molecular mechanism underlying this response.
SEAWINES project is evaluating the efficacy of the foliar application of Ulva ohnoi and Rugulopteryx okamurae extracts to control powdery and downy mildew, in addition to testing their effect on grape and wine quality. To our knowledge, this is the first study evaluating R. okamurae biostimulant capacity and fungicidal effect in viticulture. This macroalgae is relevant since it is an invasive species in our coasts, causing incalculable economic and environmental burdens. We aim to 1- Reduce the usage of chemicals in grapevines; 2- Reduce fungal diseases in viticulture; 3- Valorize polysaccharides from seaweeds; 4- Increase the added-value to wines (ecological and quality); and 5- Provide an alternative use to seaweed biomass, contributing to bio-circular economy and reducing its accumulation in our coasts.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献