Improving the efficiency of water use in agriculture by modelling the classification of groundwater quality

Author:

Rozhkova Alyona,Kukartsev Vladislav,Kvesko Mikhail,Suprun Elena,Andreev Vitaliy

Abstract

This study investigates the potential of machine learning for classifying groundwater quality in Telangana, India, to optimize water resource utilization in agriculture. The study aims to develop and evaluate a decision tree model capable of accurately predicting groundwater quality based on chemical composition data. The objective is to identify key factors influencing water quality and provide insights for improving water management practices and enhancing agricultural productivity. The study utilizes a dataset of groundwater quality parameters collected over three years (2018-2020) and employs a decision tree algorithm for model development. The results demonstrate the effectiveness of the model, achieving an accuracy of 95.7%. The analysis highlights the significance of sodium content, dissolved salts ratio, total dissolved solids, and total water hardness as key factors influencing groundwater quality. This research underscores the potential of machine learning for enhancing water resource management in agriculture and suggests further exploration of temporal dynamics, predictive modeling, and broader geographic application to further refine and extend the model’s impact.

Publisher

EDP Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3