Machine learning forecasting of CR and PRC balance of trade

Author:

Brabenec Tomàš,Šuleř Petr

Abstract

International trade is an important factor of economic growth. While foreign trade has existed throughout the history, its political, economic and social importance has grown significantly in the last centuries. The objective of the contribution is to use machine learning forecasting for predicting the balance of trade of the Czech Republic (CR) and the People´s Republic of China (PRC) through analysing and machine learning forecasting of the CR import from the PRC and the CR export to the PRC. The data set includes monthly trade balance intervals from January 2000 to June 2019. The contribution investigates and subsequently smooths two time series: the CR import from the PRC; the CR export to the PRC. The balance of trade of both countries in the entire monitored period is negative from the perspective of the CR. A total of 10,000 neural networks are generated. 5 neural structures with the best characteristics are retained. Neural networks are able to capture both the trend of the entire time series and its seasonal fluctuations, but it is necessary to work with time series lag. The CR import from the PRC is growing and it is expected to grow in the future. The CR export to the PRC is growing and it is expected to grow in the future, but its increase in absolute values will be slower than the increase of the CR import from the PRC.

Publisher

EDP Sciences

Reference40 articles.

1. Janosova D., Human Resources and Personnel Marketing Management in Business Practice from the Perspective of Globalization. Globalization and its Socio- Economic Consequences, 16th International Scientific Conference Proceedings, PTSI-V, pp. 767-774 (2016)

2. Czech and Slovak Relations with China: Contenders for China's Favour

3. Exporting and Productivity in the USA

4. Vochozka M., Vrbka J., Estimation of the development of the Euro to Chinese Yuan exchange rate using artificial neural networks. SHS Web of Conferences: Innovative Economic Symposium 2018 - Milestones and Trends of World Economy (IES2018), 61 (2019)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3